1024×2 Detector(BLM197A213-C)

1024×2 Detector(BLM197A213-C)

分享

1024×2 Detector(BLM197A213-C)

  • 产品详情
  • 产品参数



BELEAD   SENSOR

北立传感器技术(武汉)有限公司

1024 InGaAs Linear Array Detector

BLM197A213-C,1024×2,12.5μm×12.5μm

User Manual



www.BeLeadSensor.com

BeLead Sensor Technology (Wuhan)Co.,Ltd. Add: Bldg.20-3,Zhongnan   High-Tech


Innovation Center,NO.20 Chuanggu Road, Dongxihu   Dist.,Wuhan   430040,CHINA

Tel: 027-83389893

Email: info@BeLeadSensor.com



This user manualwas revised in   October2024   andmaybe

updatedsubsequently productoptimization

1. Introduction

The BLM197A213-C InGaAs linear array detector is mainly composed of a 1024×2 scale InGaAs
photosensitive chip, a readout circuit (ROIC) and a first-stage thermoelectric cooler (TEC

The BLM197A213-C InGaAs linear array detector is mainly composed of a 1024×2 scale InGaAs

photosensitive chip, a readout circuit (ROIC) and a first-stage thermoelectric cooler (TEC), and

adopts metal package. It has the characteristics of high line frequency and multi-level gain, and

can be used in spectral analysis, color sorting, medical and other applications.

can be used in spectral analysis, color sorting, medical and other applications.The BLM197A213-C InGaAs linear array detector is mainly composed of a 1024×2 scale InGaAs
photosensitive chip, a readout circuit (ROIC) and a first-stage thermoelectric cooler (TEC), and
adopts metal package. It has the characteristics of high line frequency and multi-level gain, and
can be used in spectral analysis, color sorting, medical and other applications.


2. Parameters

2.1 Photoelectric performance

Index

Typical Value

Response spectrum range (μm)*1

0.95 ±0.05~1.65 ±0.05

Pixel fill rate(%)

100

Peak quantum efficiency(%)

65

Peak Detection rate (cm, Hz/ w

1012

Peak sensitivity (A/W)

0.8

Effective pixel rate(%)*2

99

Response non-uniformity(%)

<3

Readout method

IWR / ITR

Readout rate (MHz)

1~11

Max . frame rate(fps)

40k

Gain range

4

Saturation voltage(V)

2.0

Integral capacitor(fF)

Gain range 1 10

Gain range 3 100

Gain range 2 20

Gain range 4 500

*1   Focal plane temperature=25

*2 The   percentage of pixels   near the   half-well whose   pixel   response   signal deviates from the average value less than a certain range.


2.2 Mechanical Performance

Index

Typical Value

Length × Width × Height(mm)

51.3 ×28.2 ×9.8

Weight(g)

~38

Focal plane scale

1024 ×2

Pixel center distance (μm)

12.5

Pixel size (μm2)

12.5 × 12.5

Photosensitive area (mm)

12.8 ×0.025

2.3 Operating Environment and Power Consumption Parameters

Index

Typical Value

Working temperature ( )

-20~+60

Storage temperature ( )

-40~+70

Typical power (W)*1

0.5

*1 When TEC   is   not   been   turned   on,   ambient   environment   =25 ,   Clock   frequency   =1MHz   , VDDD=VDDA=3.3V, VBOP=2.4V, VBOUT=VREF=VNDET=2.4V

3. Mechanical Parameters

This detector adopts metal packaging and is filled with high-purity nitrogen at normal pressure. The

metal housing is made of FeNiCoSi alloy with Ni layer electroplated on the surface. The window is

fixed by gluing and the cover is sealed by resistance welding. The dimension of the detector is

51.3mm   (L)×28.2mm   (W)×9.8mm   (H). There are 38 pins leading out from the bottom, of which 36

Φ0.45mm pins are arranged in a double-sided "I" shape with a pin spacing of 2.00mm. They are

used for the input of focal plane power and commands, the electrical lead-out of focal plane

detection signals and temperature sensors; 2 Φ1.00mm pins are used for the connection of

thermoelectric coolers. There are 4 Φ2.5mm through holes on both sides of the tube shell for fixing

the detector, and the pin close to the notch is number 1.



The appearance and dimensions of the mechanical interface are shown in the figure below:


4.Optical Parameters

4.1 Optical Structure

This detector uses a 1024×2 element InGaAs focal plane with 4 redundant elements on each end, that   is,the total   number of pixels   is   1032×2.In   actual   use,it   is   recommended to   use the 5th to 1028th   columns.The   pixel   shape   is   square,the   photosensitive   size   is   12.5μm×12.5μm,the structure is arranged in an "I"shape,two rows of pixels are arranged alternately,and the center distance of each row of pixels is 12.5μm.The structure is shown in the figure below:


The   design   distance   between   the   detector's   photosensitive   surface   and   the   detector's   upper surface is 3.80±0.15mm,the design distance between the detector's lower surface and the window


is   1.60±0.20mm,and   the   design   distance   between   the   detector's   lower   surface   and   the   aperture   is 0.70±0.15mm.The   window   material    is    sapphire   with   a    thickness   of    1.80±0.05mm   and    an   AR coating   on    the    surface.The   transmittance    in    the    response    band    is   >95%.The   window    light- transmitting      area      is      22.80mm       ×5.80mm,and      the      aperture      light-transmitting       size      is 13.30mm×0.60mm.The   center   of    the    photosensitive   surface    is    located    at    the    center   of    the detector,the   relative   position   offset   is   ≤0.05mm,and   the   relative   rotation   displacement   is   ≤0.02mm.


5.Electrical Features

5.1 Detector Pin Diagram


5.2 Instruction of Detector Pin Diagram

NO.   Name    Input/Output            Function              Reference value

1

VDDA

Input

Analog circuit power supply,provides

voltage for the analog circuit in the detector

Analog voltage 3.3V

2

SH3

Input

Sampling control signal,setting pixel

integration time,changing readout mode,

see the timing section for specific methods

Digital voltage High 3.3V/Low OV

3

SH2

Input

4

SH1

Input

5

RESET

Input

Reset signal,controls the length of the

circuit acquisition cycle.For control

methods,see the timing section

Digital voltage High 3.3V/LowoV


NO.

Name

Input/ Output

Function

Reference Value

6

VOUT5S

Output

R is the reference signal, S is the output

signal. The actual detector response signal

value is obtained by subtracting the output

signal from the reference signal of the same

channel.

0.35~2.45V

7

VOUT5R

Output

8

VOUT6S

Output

9

10

VOUT6R

VOUT7S

Output

Output

11

VOUT7R

Output

12

VOUT8S

Output

13

VOUT8R

Output

14

VBOUT

Input

Buffer bias, provides bias voltage for circuit buffer

Analog voltage 2.4V

15

VBOP

Input

Amplifier bias, provides bias voltage for signal amplifier

Analog voltage 2.4V

16

VREF

Input

Reference voltage, providing a reference value for the output signal

Analog voltage 2.4V

17/ 18

TS

-

Temperature Sensor

-

19

GND

Input

Ground wire

-

20

VNDET

Input

Chip public N

Analog voltage 2.4V

21

VBUF

Input

Buffer bias, providing bias voltage for the circuit's total buffer

Analog voltage 2.4V

22

VOUT4R

Output

See No. 6 ~ No. 13

0.35~2.45V

23

VOUT4S

Output

24

VOUT3R

Output

25

VOUT3S

Output

26

VOUT2R

Output

27

CASE

-

-

-

28

VOUT2S

Output

See No. 6 ~ No. 13

0.35~2.45V

29

VOUT1R

Output

30

VOUT1S

Output

31

DSELUNIT

Input

Trigger pulse, a sign that the circuit starts collecting signals

Digital Voltage

High 3.3V/ Low 0V

32

DSELBUF

Input

Trigger pulse

Digital Voltage

High 3.3V/ Low 0V


No.

Name

Input/Out put

Function

Reference value

33

CLK

Input

Clock,providing a time reference for circuit drive timing

Digital voltage High 3.3V/Low OV

34

SELCAP0

Input

Detector gain selection,controlling the detector output signal size,for specific methods seeing the timing section

Digital voltage High 3.3V/Low OV

35

SELCAP1

Input

36

VDDD

Input

Digital circuit power supply,providing voltage for the digital circuit in the detector

Analogue voltage 3.3V

37

38

TEC(-)TEC

(+)

Input Input

Thermoelectric cooler input voltage,TEC(+)

pin is connected to high level for cooling,

and low level for heating

-

Precautions:

The DC input directly affects the overall noise of the detector,so the ripple noise of the DC input power supply has the following requirements:

1)VDDA<2mV

2)VDDD<10mV

3)VREF/VNDET<0.3mV

4)VBOP/VBUF/VBOUT<1mV

5.3 Detector Working Principle and Connection Diagram

Short-wave Infrared Signal Reception and Photoelectric Conversion


4 Detector Timing Description (IWR Mode)

The overall readout circuit driving timing pulse is shown in the following figure:

 96ms



CLK               

RESET

SH1

SH2

SH3

4-192m

DSELBUF

 DSELUNIT

VOUT

The overall timing requirements are as follows:

Name

High level width

Initial level

Rising edge time

CLK

0.5 clock cycle

Low

3.0μs

RESET

Adjust according to the integration time

High

1.5μs

SH1

1μs

Low

2.5μs

SH2

1μs

Low

22.5μs

SH3

3μs

Low

24.0μs

DSELBUF

192ns

Low

27.0μs

DSELUNIT

96ns

Low

27.1μs

Precaution:

1.The   CLK   cycle   and   RESET   high   level   width   can   be   set   according   to   requirements.The recommended CLK frequency   range   is   1-11   MHz,and   the   RESET   low   level width   cannot be less than 2μs.

2.In   IWR   mode,the   relative   positions   of   SH1,SH2,and   SH3   cannot   be   changed,and   the   specific integration time of the detector is the time from the falling edge of SH1 to the falling edge of SH2 in the same RESET cycle.

3.The DSELBUF high level needs to cover a complete CLK high level,and the rising edge needs to be within the CLK low level.It is recommended to set the rising edge at 1/2 of the CLK low level.


4.    The   actual signal starts to   be read out at the first CLK rising edge after the rising edge of DSELUNIT, and the reference signal R and the output signal S are read out in sequence until reaching the last CLK cycle before the rising edge of SH3.

5.    If the RESET high level width is not enough to read out all 1032 pixels, when the next RESET high level comes, the reading will still start from the first pixel, not from the pixels that have not been read. If the RESET high level width is too large, after reading all 1032 pixels of the channel, it will continue to be empty until the RESET low level comes to reset.

6.    It is recommended to use digital input voltage for SH1, SH2 and SH3, that is, to keep 3.3V high level/ 0 V low level consistently.

7.    Anti-static measures should be taken during the delivery and use of the detector.

8.    The power supply status must be checked during the use of the detector, and short circuit of the signal output terminal is strictly prohibited.

9.    There are 2 rows of photosensitive elements, and each row has 4 channels that are read out synchronously.   Each   channel   has   two   output   levels: VOUTR   (reference   level)   and   VOUTS (signal level). Taking one row as an example, the output data of the 4 channels are as follows:

Channel

Group No.1

Group No.2

Group No.3

Group No.4

……

Group No.255

Group No.256

Group No.257

Group No.258

VOUT1 R/S

A1

A2

A3

A4

……

A255

A256

A257

A258

VOUT2 R/S

B259

B260

B261

B262


B514

B515

B517

B516

VOUT3 R/S

C517

C518

C519

C520


C769

C770

C771

C774

VOUT4 R/S

D775

D776

D777

D778


D1029

D1030

D1031

D1032

The 258 sets of data output by 4 channels in each row can be spliced into 1032 sets of data. The splicing method is as follows:

A1

A258

B259

B516

C517

C774

D775

D1032


The signal data in 1032×2 format is collected,the middle area is 1024×2 which is the effective pixel area,and the rest of the area is the redundant pixel area.

Row

Column1~4

Column 5~1028

Column 1029~1032

Row 1

Redundant Area

Effective imaging area

Redundant Area

Row 2

Redundant Area

Effective imaging area

Redundant Area

This detector has 4 gain levels.It is recommended to use the highest gain level (level 1).The specific relationship between the gain level and input voltage is shown in the following table:

Level

SELCAP0

SELCAP1

Gain

1

0

0

High

Low

2

1

0

3

0

1

4

1

1

5.5 Detector Peripheral Recommended Circuit Diagram


3.3V

10uF

GND 3.3V

10uF

GND 2.4V

100Ω

10uF

GND 2.4V

10uF

GND


0.1uF

0.1uF

0.1uF

0.1uF


VDDA

GND

VDDD

GND

VREF

VNDET

GND

VBOUT

VBOP VBUF

GND


CLK

RESET

SHI

SH2

SH3

DSELUNIT

DSELBUF

SELCAP0

SELCAP1

VOUTR

VOUTS


FPGA

+

+


6.Thermal    Parameters

6.1 Thermoelectric Cooler Features

The detector integrates a first-stage thermoelectric cooler (TEC).The center of the heat dissipation surface is the center of the lower surface of the detector.

The heat dissipation area should be ≥20mm×20mm.

Its performance parameters are shown in the following table:

Parameters

Values

Max.allowable load current(ITEC-max/A)

8.5

Max.allowable load voltage(VTEC-max/V)

4.3

AC impedance (including AC resistance)(ACR/Ω)

0.33-0.35

6.2 Features of Temperature Monitoring Module

This detector uses a thermistor as a temperature sensor.The relationship between the resistance

and temperature within the operating temperature range is shown in the following chart:

1                                                                                   10 Thermistor   resistance(kΩ)


The typical relationship between thermistor resistance and temperature is shown in the following

table:

Temperature(℃)

Resistance (kΩ)

Temperature(℃)

Resistance(kΩ)

-20

8.608

30

1.268

-15

6.909

35

1.077

-10

5.587

40

0.918

-5

4.549

45

0.786

0

3.729

50

0.674

5

3.075

55

0.581

10

2.55

60

0.502

15

2.126

65

0.435

20

1.782

70

0.378

25

1.5



The corresponding relationship between thermistor resistance and temperature is as follows:

T1:The temperature of testing target,unit: .

T2:Reference   point temperature,unit:,the typical   reference temperature value within   -20~70 is   10   or   40,and   the   reference   temperature   value   close   to the target temperature   should   be selected.

R1:Thermistor   resistance   corresponding to T1,unit:kΩ .

R2:Thermistor   resistance   corresponding to T2,unit:kΩ .

B:Thermal sensitivity coefficient,within -20~70,the typical value of B10/40 is 3019.6±60.

Precaution:

1.During TEC installation,attention should be paid to the additional resistance introduced by the external electrical structure.If the additional resistance exceeds   10%of the TEC   resistance, the I-V curve needs to be recalibrated.

2.It   is   recommended   to   connect   the   TEC   with   a   smaller   connection   resistance.If   welding   is required,short-circuit   grounding   protection   is   required.The   welding   temperature   should   be ≤250 and the welding time should be <10s.


3.    The relationship between temperature and resistance in each node interval of the temperature monitoring module can be approximately proportional to a first-order linear function, and the resistance corresponding to the preset temperature can be estimated according to demand.

4.    Before turning on the TEC, the temperature   monitoring module must   be confirmed working properly, the heat dissipation surface is in full contact with the radiator, the heat dissipation surface is not less than the required size area, and the radiator is working properly. Do not turn on the TEC without installing the radiator or when the radiator is not working.

5.    When the TEC is turned on for the first time, the current or voltage should be gradually loaded from   0A   or   0V   while   monitoring   the   temperature   change   until   the   preset   temperature   is reached.

6.    Since the performance of the detector is affected by temperature, the TEC should be turned on first until the temperature is stable and then the detector is turned on. It is not recommended to operate the detector in temperature change environment.

7.    When the detector is not working, the power supply to TEC should be turn off to extend the service life of TEC.

8.    The cooling and heating effects of the detector are related to the ambient temperature, power performance, and heat dissipation status. It is recommended to reasonably match the heat dissipation system according to the ambient environment and the performance requirements of the detector.


7. Product Solutions

Issue

Possible causes

Solutions

The detector VOUT

signal output is

abnormal

No power supply or abnormal power supply

Check whether each power supply meets the electrical

requirements in the manual.

Timing anomalies

Modulate the detector timing pulse width according to the

recommendations in the user manual.

The detector output signal is too noisy

Large power supply ripple noise

The DC power supply ripple noise must be supplied

according to the electrical requirements in the user

manual.

High ambient temperature

Operate under appropriate circumstances

Thermoelectric cooler pins are reversed

Check if there is reverse connection by detecting temperature monitoring module

8. Customer Support

For general technical information and further business inquiries, please contact us.

Our   address:   Bldg.   20-3,   Zhongnan   High-Tech   Innovation   Center,   No.   20   Chuanggu   Road, Dongxihu Dist., Wuhan 430040, China

Please call:+86 027-83389893

E-mail: info@BeLeadSensor.com

Please Visit: www.BeLeadSensor.com

For   further   support   on   this   product,   you   are   welcomed   to   communicate   with   our   application engineers.

9. Statement

This   user   manual   is   copyrighted   by   Belead   Sensor Technology   (Wuhan)   Co.,   Ltd.   (hereinafter referred to as "Belead Sensor").Belead Sensors reserves all rights. No organization or individual may extract, copy, translate, or modify all or part of the contents of this manual in any way without written permission.

Users   must   comply   with   all   requirements   in   this   manual   when   using   this   product.   If,   after inspection, Belead Sensor finds that the product is damaged, defective or cannot be used due to user abuse, incorrect operation, misuse, modification, negligence, improper installation, etc., which


does not comply with the information and precautions described in the manual, then such product is not eligible for the warranty service provided by Belead Sensor.

In addition, the warranty does not apply to:

1.    Any products or components not manufactured by Belead Sensor;

2.    Stipulated   in the contract and technical agreement that have been reviewed and signed in writing by Belead Sensor.


Application scenario
气体分析
咨询
订购